
Machine Learning

10

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 1

10 Machine Learning

10.1 Learning agents

10.2 Inductive learning

10.3 Deep learning

10.4 Reinforcement learning#

10.5 Statistical learning+#

10.6 Transfer learning∗

10.7 Ensemble learning∗

10.8 Federated learning∗

10.9 Explanation-based learning∗

10.10 Computational learning theory∗

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 2

Learning agents
Performance standard

Agent

E
n

v
iro

n
m

e
n

t
Sensors

Effectors

Performance
 element

changes

knowledge
learning
 goals

 Problem
 generator

feedback

 Learning
 element

Critic

experiments

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 3

Machine learning

Learning is one basic feature of intelligence
looking for the principle of learning

Learning is essential for unknown environments
when a designer lacks omniscience

Learning is useful as a system construction method
exposing the agent to reality rather than trying to write it down

Learning modifies the agent’s decision mechanisms
improving performance

A.k.a., Data Mining, Knowledge Acquisition (Discovery), Pattern
Recognition, Adaptive System, Data Science (Big data) etc.

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 4

Types of learning

Supervised learning: correct answers for each example
– requires “teacher” (label)

Unsupervised learning: requires no teacher (unlabeled), but harder
– looking for interesting patterns in examples
– Self-supervised learning: unsupervised learning by unlabelled

data in a supervised manner, predicting only a subset of information
using the rest
Semisupervised learning: between supervised & unsupervised learning

– improve performance in one of these two by utilizing information
associated with the other

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 5

Types of learning

Reinforcement learning : occasional rewards
– tries to maximize the rewards

Transfer learning: learning a new task through the transfer of targets
from a related source task that has already been learned
Ensemble learning: multiple learners are trained to solve the same
problem
Federated learning: many clients collaboratively train a model
Explanation-based Learning: learning in knowledge

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 6

Induction

Recall: Induction: if α, β, then α→ β (generalization)
(Deduction: if α, α→ β, then β
Abduction: if β, α→ β, then α)

Induction can be viewed as reasoning or learning

History hint: R. Carnap, The Logical Foundations of Probability, 1950
(induction as probability logic)

Simplest form: learning (hypotheses) from examples

Math form: learning a function from examples
examples = data, data-driven or adaptive
function = hypothesis/model/parameter, most of applied math
⇐ from philosophy to AI

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 7

Inductive learning

f is the target function (task)

An example is a pair x, f (x), e.g., tic-tac-toe
O O X

X
X

, +1

Learning problem: find a hypothesis h
such that h ≈ f
given examples

⇒ to learn f

Simplified model of human learning
– Ignores explicit knowledge (except for learning in knowledge)
– Assumes examples are given
– Assumes that the agent wants to learn f

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 8

Learning method

To learn f
Find h (output) s.t. h ≈ f (approximation/optimizaiton)

given data (input) as a training set
perform well on test set of new data beyond the training set,

measuring the accuracy of h
– generalization: the ability to perform well on previously unob-

served data
– errors rate (loss/cost): the proportion of mistakes it makes (per-

formance measure)
training error, generalization error, test error

Learning can be simplified as function (curve) fitting
Find a function f ∗ s.t. f ∗ ≈ f

fitting by training data and measuring by test data

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 9

Learner

Learner L: a general learning algorithm

• Task: learning f

• Input: training set X

• Output: approximate function f ∗

• Performance measurement (error rate): ∃ǫ. e < ǫ, f ∗(X) ≈ f

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 10

Function fitting

Fit h to agree with f on training set
– h is consistent if it agrees with f on all data

E.g., curve fitting

x

f(x)

(Inductive) bias: the tendency of a predictive hypothesis to deviate
from the expected value when averaged over different training sets

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 11

Function fitting

Fit h to agree with f on training set
– underfitting: not able to obtain a low error on the training set

E.g., curve underfitting

x

f(x)

Bias: e.g., the hypothesis space of linear functions induces a strong
bias – only allows functions consisting of straight lines

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 12

Function fitting

Fit h to agree with f on training set

E.g., curve fitting

x

f(x)

Variance: the amount of change in the hypothesis due to fluctuation
in the training data

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 13

Function fitting

Fit h to agree with f on training set
E.g., curve fitting

x

f(x)

Bias–variance tradeoff between low-bias (complex) hypotheses that
fit the training data well and low-variance (simpler) hypotheses that
may generalize better

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 14

Function fitting

Fit h to agree with f on training set
– overfitting: gap between training error and test error is too large

E.g., curve overfitting

x

f(x)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 15

Function fitting

Fit h to agree with f on training set

E.g., curve fitting

x

f(x)

Ockham’s razor: Given multiple hypotheses that are consistent with
the data, the simplest should be preferred

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 16

Performance measurement

How do we know that h ≈ f? (Hume’s problem of induction)

1) Theory, say computational learning theory

2) Try h on a new test set of examples
(use same distribution over example space as training set)

Learning curve = % correct on the test set as a function of training
set size

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

%
 c

o
rr

e
c
t

o
n

 t
e

s
t

s
e

t

Training set size

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 17

Function fitting

A timely XKCD.com

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 18

Attribute-based representations

Examples described by attribute values/features (Boolean, etc.)
E.g., situations where I will/won’t wait for a table
Example Attributes Target

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

X1 T F F T Some $$$ F T French 0–10 T

X2 T F F T Full $ F F Thai 30–60 F

X3 F T F F Some $ F F Burger 0–10 T

X4 T F T T Full $ F F Thai 10–30 T

X5 T F T F Full $$$ F T French >60 F

X6 F T F T Some $$ T T Italian 0–10 T

X7 F T F F None $ T F Burger 0–10 F

X8 F F F T Some $$ T T Thai 0–10 T

X9 F T T F Full $ T F Burger >60 F

X10 T T T T Full $$$ F T Italian 10–30 F

X11 F F F F None $ F F Thai 0–10 F

X12 T T T T Full $ F F Burger 30–60 T

Classification of examples is positive (T) or negative (F)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 19

Decision trees learning

DT (Decision Trees): supervised learning
Training set: input data (examples) and corresponding labels(/ground-

truth/targets/answer) t
– Regression: t is a real number (e.g., stock price)
– Classification: t is an element of a discrete set {1, . . . , C}

t is often a highly structured object (e.g., image)
Binary classification: t is T or F ⇐ simple DT

f takes input features and returns output (“decision”) as trees

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 20

Decision trees

E.g., here is the “true” tree for deciding whether to wait for
one possible representation for hypotheses to be induced

No Yes

No Yes

No Yes

No Yes

No Yes

No Yes

None Some Full

>60 30−60 10−30 0−10

No Yes

Alternate?

Hungry?

Reservation?

Bar? Raining?

Alternate?

Patrons?

Fri/Sat?

WaitEstimate?F T

F T

T

T

F T

TFT

TF

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 21

Expressiveness

DT induction is the simplest and yet most successful form of learning
can express any function of the input attributes

E.g., for Boolean functions, truth table row → path to leaf

FT

A

B

F T

B

A B A xor B

F F F
F T T
T F T
T T F

F

F F

 T

 T T

Prefer to find more compact decision trees

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 22

Expressiveness∗

• Discrete-input, discrete-output case
Decision trees can express any function of the input attributes

• Continuous-input, continuous-output case
Decision trees can approximate any function arbitrarily closely

Trivially, there is a consistent decision tree for any training set
w/ one path to leaf for each example
(unless f nondeterministic in x)
but it probably won’t generalize to new examples

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 23

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 24

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 25

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions
= number of distinct truth tables with 2n rows

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 26

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions
= number of distinct truth tables with 2n rows = 22

n

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 27

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions
= number of distinct truth tables with 2n rows = 22

n

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616
trees

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 28

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions
= number of distinct truth tables with 2n rows = 22

n

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616
trees

How many purely conjunctive hypotheses (e.g., Hungry ∧ ¬Rain)??

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 29

Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions
= number of distinct truth tables with 2n rows = 22

n

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616
trees

How many purely conjunctive hypotheses (e.g., Hungry ∧ ¬Rain)??

Each attribute can be in (positive), in (negative), or out
⇒ 3n distinct conjunctive hypotheses

More expressive hypothesis space
– increases the chance that target function can be expressed
– increases the number of hypotheses consistent w/ training set
⇒ may get worse predictions

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 30

DT learning

Aim: find a small tree consistent with the training examples
Idea: (recursively) choose “most significant” attribute as root of
(sub)tree

def DTL(examples, attributes, parent-examples)

if examples is empty then return Plurality-Value(parent-examples)

else if all examples have the same classification then return the classification

else if attributes is empty then return Plurality-Value(parent-examples)

else

A← argmaxa∈ attributesImportance(a, examples)

tree← a new decision tree with root test A

for each value v of A do

exs←{e : e ∈ examples and e.A = v}
subtree←DTL(exs,attributes -A, examples)

add a branch to tree with label (A = v) and subtree subtree

return tree

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 31

Choosing an attribute

Idea: a good attribute (Importance) splits the examples into sub-
sets that are (ideally) “all positive” or “all negative”

None Some Full

Patrons?

French Italian Thai Burger

Type?

Patrons? is a better choice—gives information about the classi-
fication

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 32

Information#

Information answers questions

The more clueless I am about the answer initially, the more informa-
tion is contained in the answer

Scale: 1 bit = answer to Boolean question with prior 〈0.5, 0.5〉

Information in an answer when prior is 〈P1, . . . , Pn〉 is
H(〈P1, . . . , Pn〉) = Σn

i=1 − Pi log2 Pi

(called entropy of the prior)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 33

Information#

Suppose we have p positive and n negative examples at the root
⇒H(〈p/(p+n), n/(p+n)〉) bits needed to classify a new example

E.g., for 12 restaurant examples, p=n=6 so we need 1 bit

An attribute splits the examples E into subsets Ei, each of which
(we hope) needs less information to complete the classification

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 34

Information#

Let Ei have pi positive and ni negative examples
⇒ H(〈pi/(pi + ni), ni/(pi + ni)〉) bits needed to classify a new

example
⇒ expected number of bits per example over all branches is

Σi
pi + ni

p + n
H(〈pi/(pi + ni), ni/(pi + ni)〉)

For Patrons?, this is 0.459 bits, for Type this is (still) 1 bit
choose the attribute that minimizes the remaining information

needed

⇒ just what we need to implement Importance

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 35

Example: decision tree

Decision tree learned from the 12 examples

No Yes

Fri/Sat?

None Some Full

Patrons?

No Yes

Hungry?

Type?

French Italian Thai Burger

F T

T F

F

T

F T

Substantially simpler than the original tree — with more training
examples some mistakes could be corrected

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 36

DT: classification and regression∗

DT can be extended
each path from the root to a leaf defines a region of input space

• Classification tree: discrete output
leaf value is typically set to the most common value in a class set

• Regression tree: continuous output
leaf value is typically set to the mean value in a class set

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 37

K-means learning

K-means: unsupervised learning
have some unlabbled data, and want to infer the causal structure

underlying the data — the structure is latent, i.e., never observed
Clustering: grouping data points into clusters

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 38

K-means

Idea
• Assumes there are k clusters, and each point is close to its

cluster center (the mean of points in the cluster)
• If we knew the cluster assignment we could easily compute

means
• If we knew the means we could easily compute cluster assign-

ment
• Chicken and egg problem
• Can show it is NP hard
• Very simple (and useful) heuristic — start randomly and alter-

nate between the two

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 39

K-means learning#

1. Initialization: randomly initialize cluster centers

2. Iteratively alternates between two steps
• Assignment step: Assign each data point to the closest

cluster
• Refitting step: Move each cluster center to the center of

gravity of the data assigned to it

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 40

K-means algorithm#

1. Initialization: Set K cluster means m1, . . . ,mK to random
values

2. Repeat until convergence (until assignments do not change)
• Assignment: Each data point x(n) assigned to nearest mean
ĥn = arg mink d(mk,x

(n))

(with, e.g., L2 norm: ĥn = arg mink ||mk − x(n)||)
and Responsibilities (1-hot encoding)

r̂
(n)
k = 1↔ k̂(n) = k

• Refitting: Model parameters, means are adjusted to match
sample means of data points they are responsible for

mk =
∑

n r
(n)
k x(n)

∑
n r

(n)
k

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 41

Hyperparameter

Hyperparameter: choosing k by fine-tuning (no learning)

Hyperparameters
– are settings to control the algorithm’s behavior
– most of the learning has the hyperparameters
– tuning: hand-tuning, grid search, random search (sampling)
– can be learned as well (nested learning procedure)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 42

Validation

Validation set: divide the available data (without the test set) into a
training set and a validation set

– lock the test set away until the learning is done to obtain an
independent evaluation of the final hypothesis

Can tune hyperparameters using a validation set

Measure the generalization error (error rate on new examples) using
a test set

Usually, the dataset is partitioned
training set ∪ validation set ∪ test set
training set ∩ validation set ∩ test set = { }

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 43

Self-learning

Self-learning/pseudo-labelling (wrapper method): semi-supervised learning

Idea: a single supervised classifier that is iteratively trained on both
labeled data and data that has been pseudo-labeled in previous iter-
ations of the algorithm

Given one (or more) supervised classifier(s) as base leaner, say DT/K-
means, self-learning usually consists of two alternating steps

1. Training: The base learner is trained on the labeled data and
possibly pseudo-labeled data from previous iterations

2. Pseudo-labelling: The resulting classifier is used to infer labels
for the previously unlabelled data, and the data for which the learner
was most confident of their predictions are pseudo-labeled for use in
the next iteration

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 44

Pseudo-labelling#

Iteratively training with the original labeled data and previously unla-
belled data that is augmented with predictions from earlier iterations
of the learner, the latter is referred to as pseudo-labeled data

The prediction for pseudo-labels can be done in an optimal way like
argmin (loss function, see below)

Hint: there are intrinsically semi-supervised extensions of many su-
pervised learning approaches

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 45

Regression

Learner LR: Regression

Algorithm

• choose a model describing the relationships between variables of
interest

• define a loss function quantifying how bad is the fit to the data

• choose a regularizer saying how much we prefer different candidate
explanations

• fit the model, e.g. using an optimization algorithm

-Parametric model: a learning model that summarizes data with a set
of parameters of fixed size
-Nonparametric model: a learning model that cannot be characterized
by a bounded set of parameters

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 46

Regression problem

Want to predict a scalar t as a function of a scalar x
Given a dataset of pairs (inputs, targets/labels) {(x(i), t(i))}Ni=1

Linear regression model (linear model): an affine (linear) function
y = wx + b
• y is the prediction
• w is the weight
• b is the bias
• w and b together are the parameters (parametric model)
• Settings of the parameters are called hypotheses

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 47

Loss function

Loss function: squared error SE (says how bad the fit is)

L(y, t) = 1

2
(y − t)2

y − t is the residual, and want to make this small in magnitude
(the 1

2 factor is just to make the calculations convenient)
Cost function: loss function averaged over all training examples

J (w, b) = 1

2N

N∑

i=1

(y(i) − t(i))2 =
1

2N

N∑

i=1

(wx(i) + b− t(i))2

Multivariable regression: linear function

y =

d∑

j=1

wjxj + b = w⊤x + b

x ∈ R
d, d is the dimension of x

(no different than the single input case, just harder to visualize)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 48

Optimization problem

Optimization: minimize cost function, i.e. finding the parameters
w∗, b∗ s.t.

w∗, b∗ = argmin
w,b

J (w, b)

• Direct solution: minimum of a smooth function (if it exists) occurs
at a critical point, i.e., the point where the derivative is zero

Linear regression is one of only a handful of models that permit
direct solution

• Gradient descent (GD): an iteration (algorithm) by applying an
update repeatedly until some criterion is met

Initialize the weights to something reasonable (e.g., all zeros) and
repeatedly adjust them in the direction of steepest descent

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 49

Closed form solution#

• Chain rule for derivatives

∂L
∂wj

= (y − t)xj
∂L
∂b

= y − t

• Cost derivatives

∂L
∂wj

=
1

N

N∑

i=1

(y(i) − t(i))x
(i)
j

∂L
∂b

=
1

N

N∑

i=1

y(i) − t(i)

• Analytic in matrix y ∈ R
n

w∗ =
(
x⊤x

)−1
x⊤y

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 50

Gradient descent

Known
if ∂J

∂wj
> 0, then increasing wj increases J

if ∂J
∂wj

< 0, then increasing wj decreases J

Updating: decreases the cost function

wj ← wj − α
∂J
∂wj

=
α

N

N∑

i=1

(y(i) − t(i))x
(i)
j

b← b− α
∂J
∂wj

=
α

N

N∑

i=1

(y(i) − t(i))

α is a learning rate (hyperparameter): the larger it is, the faster w
changes

typically small, e.g., 0.01 or 0.0001

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 51

Stochastic gradient descent

GD: the loss surface is convex
– there is no local minima
– convergence to the global minimum

But, very slow

• Batch GD: sum over all N training examples for every epoch (each
step that covers all the training examples)

• Stochastic gradient descent (SGD): randomly selects a minibatch
of m out of the N examples at each step ⇐ faster

– say, m = 100, N = 10, 000, reduced by a factor of 100
– since the error of the gradient is proportional to the square root

of the number of examples, the error increases by only a factor of 10
– take 10 times more steps before convergence, minibatch SGD

is 10 times faster than a full batch

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 52

Gradient descent vs closed form solution#

• GD can be applied to a much broader set of models

• GD can be easier to implement than direct solutions, especially
with automatic differentiation software

• For regression in high-dimensional spaces, GD is more efficient
than direct solution (matrix inversion is an O(d3) algorithm)

Hints
• For-loops in Python are slow, so we vectorize algorithms by

expressing them in terms of vectors and matrices
• Vectorized code is much faster
• Matrix multiplication is very fast on a GPU (Graphics Process-

ing Unit)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 53

Maximum likelihood estimators#

Usually, optimizing the cost by maximizing the likelihood (MLE)
p(y | x)

Consider linear regression by assuming that observations arise from
noisy ǫ which is a normal (Gauss) distribution

y = w⊤x + b + ǫ, ǫ ∼ N
(
0, σ2

)

Recall Gauss (normal) distribution with mean µ and variance σ2

(standard deviation σ)

N (µ, σ) = p(x) =
1√
2πσ2

exp

(
− 1

2σ2
(x− µ)2

)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 54

Maximum likelihood estimators#

Write out the likelihood of seeing y for given x

P (y | x) = 1√
2πσ2

exp

(
− 1

2σ2

(
y −w⊤x− b

)2
)

While maximizing the product of exponential functions might look
difficult, maximizing the log of the likelihood instead; more often
expressed as minimization, i.e., minimize the negative log-likelihood

− logP (y | X) =

n∑

i=1

1

2
log
(
2πσ2

)
+

1

2σ2

(
y(i) −w⊤x(i) − b

)2

Just need one more assumption that σ is some fixed constant, the
first term can be ignored and the second term is identical to the
squared error loss except for the multiplicative constant

Theorem minimizing the mean SE = maximizing MLE
(of a linear model under the additive Gaussian noise)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 55

Cross entropy loss#

− logP (y | X) =

n∑

i=1

− logP
(
y(i) | x(i)

)
=

n∑

i=1

l
(
y(i), ŷ(i)

)

where for any pair of label y(i) and the prediction ŷ(i) over q classes,
the loss function l is called the cross-entropy

l(y, ŷ) = −
q∑

j=1

yj log ŷj

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 56

Softmax regression#

Regression ⇒ Classification
Want to predict 4 features and 3 output categories

o1 = x1w11 + x2w12 + x3w13 + x4w14 + b1
o2 = x1w21 + x2w22 + x3w23 + x4w24 + b2
o3 = x1w31 + x2w32 + x3w33 + x4w34 + b3
o = Wx + b

Regression is a fully connected network, the same as a single-layer
neural network (see later)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 57

Softmax regression#

Softmax function: transforming the logits oj nonnegative and sum to
1, while requiring the model differentiable

ŷ = softmax(o) where ŷj =
exp (oj)∑
k exp (ok)

Softmax in the loss

l(y, ŷ) = −
q∑

j=1

yj log
exp (oj)∑q
k=1 exp (ok)

=

q∑

j=1

yj log

q∑

k=1

exp (ok)−
q∑

j=1

yjoj

= log

q∑

k=1

exp (ok)−
q∑

j=1

yjoj

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 58

Softmax regression#

Derivative w.r.t. any logit oj

∂ojl(y, ŷ) =
exp (oj)∑q
k=1 exp (ok)

− yj = softmax(o)j − yj

Remark: log-it

logit = log(Odds) = log(
P

1− P
)

logit (Pi) = ln
Pi

1− Pi
= w1xi1 + w2xi2 + · · · + wnxin + b

Predicting prob. (distribution) P for linear regression

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 59

Classification

• Classification: predict a discrete-valued target

• Binary: predict a binary target t ∈ {0, 1}

• Linear: model is a linear function of x, followed by a threshold

z = w⊤x + b

y =

{
1 if z ≥ r

0 if z < r

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 60

Linear classification

Simplification: eliminating the threshold and the bias

• Assume (without loss of generality) that r = 0

wTx + b ≥ r ⇐⇒ wTx + b− r︸ ︷︷ ︸
,b′
≥ 0

• Add a dummy feature x0 which always takes the value 1, and the
weight w0 is equivalent to a bias

Simplified model

z = wTx

y =

{
1 if z ≥ 0

0 if z < 0

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 61

Examples

NOT

x0 x1 t
1 0 1
1 1 0

b > 0

b + w < 0

b = 1, w = −2

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 62

Examples

AND
x0 x1 x2 t
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

b < 0

b + w2 < 0

b + w1 < 0

b + w1 + w2 > 0

b = −1.5, w1 = 1, w2 = 1

Question: Can a binary linear classification simulate propositional
connectives (propositional logic)?

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 63

The geometric interpretation

Recall from linear regression

Say, calculating the NOT/AND weight space

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 64

The geometric interpretation#

Input Space (data space)

• Visualizing the NOT example

• Training examples are points

• Hypotheses are half-spaces whose boundaries pass through the
origin (the point f (x0, x1) in the half-space)

• The boundary is the decision boundary

– In 2D, it’s a line, but think of it as a hyperplane

• The training examples are linearly separable

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 65

The geometric interpretation

Weight Space

w0 > 0

w0 + w1 < 0

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 66

Limits of linear classification

Linearity implies monotonicity: any increase/decrease in the input
must either cause an increase/decrease in the output (if the weight
is positive/negative)
Some datasets are not linearly separable, e.g., XOR

XOR is not linearly separable

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 67

Limits of linear classification

• Sometimes we can overcome this limitation using feature maps,
just like for linear regression, e.g., XOR

φ(x) =

x1
x2
x1x2

x1 x2 φ1(x) φ2(x) φ3(x) t
0 0 0 0 0 0
0 1 0 1 0 1
1 0 1 0 0 1
1 1 1 1 1 0

• This is linearly separable ⇐ Try it
• Not a general solution: it can be hard to pick good basis functions
• Instead, neural networks can be used as a general solution to learn
nonlinear hypotheses directly

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 68

Cross validation∗

Want to learn the best hypothesis (choosing and evaluating)
– assumption: independent and identically distributed (i.i.d.) ex-

ample space
i.e., there is a probability distribution over examples that remains

stationary over time

Cross-validation (Larson, 1931): randomly split the available data
into a training set and a test set

– fails to use all the available data
– invalidates the results by inadvertently peeking at the test data

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 69

Cross validation

k-fold cross-validation: each example serves as training data and test
data
• splitting the data into k equal subsets
• performing k rounds of learning

– on each round 1/k of the data is held out as a test set and the
remaining examples are used as training data
The average test set score of the k rounds should be a better estimate
than a single score

– popular values for k are 5 and 10

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 70

Cross validation

def Cross-Validation(Learner,size,k,examples)

local variables: errT, an array, indexed by size, storing training-set error rates

errV, an array, indexed by size, storing validation-set error rates

fold-errT← 0; fold-errV← 0

for fold = 1 to k do

training set,validation set←Partition(examples,fold,k)

h←Learner(size,training set)

fold-errT← fold-errT + Error-Rate(h, training set)

fold-errV← fold-errV +Error-Rate(h, validation set)

return fold-errT/k,fold-errV/k

// Two values: average training set error rate, average validation set error rate

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 71

Model selection∗

Complexity versus goodness of fit
select among models that are parameterized by size
for decision trees, the size could be the number of nodes in the

tree

Wrapper: takes a learning algorithm as an argument (e.g., DT)
– enumerates models according to a parameter, size
– – for each size, uses cross-validation on Learner to compute

the average error rate on the training and test sets
– starts with the smallest, simplest models (probably underfit the

data), and iterates, considering more complex models at each step,
until the models start to overfit

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 72

Model selection

def Cross-Validation-Wrapper(Learner,k,examples)

local variables: errT, errV

for size = 1 to ∞ do

errT [size], errV [size]←Cross-Validation(Learne r, size, k, examples)

if errT has converged then do

best size← the value of size with minimum errV [size]

return Learner(best size, examples)

Simpler form of meta-learning: learning what to learn

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 73

Generalization∗

Recall: generalization is the ability to perform well on previously un-
observed data

Problem: if consistency with the training examples is considered an
appropriate generalization, then a learner can never make the induc-
tion beyond those it has observed

Only if the learner has other sources of information (or biases)
for choosing one generalization over the other, can it non-arbitrarily
classify instances beyond those in the training set

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 74

Inductive bias

Inductive bias: allows a learning algorithm to prioritize one solution
(or interpretation) over another, independent of the observed data

– assumptions about either the data-generating process
– the prior distribution (Bayesian model)
– a regularization term (added to avoid overfitting)
– the architecture of the algorithm (neural network), etc.

If unbiased generalization systems are incapable of making the in-
ductive leap to characterize the new instances, then the power of a
generalization system follows directly from its biases – from decisions
based on criteria other than consistency with the training instances
Ideally, inductive biases both improve the search for solutions with-
out substantially diminishing performance and help find solutions that
generalize in a desirable way
Understanding learning mechanisms depends upon understanding var-
ious biases

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 75

Regularization∗

From error rates to loss function: l(x, y, ŷ) ≈ l(y, ŷ)
= Utility (result of using y given an input x)

- Utility (result of using ŷ given an input x)
amount of utility lost by predicting h(x) = ŷ when the correct answer
is f (x) = y

e.g., it is worse to classify non-spam as spam than to classify spam
as non-spam

Regularization (for a function that is more regular, or less complex):
an alternative approach to search for a hypothesis

directly minimizes the weighted sum of the loss and the complexity
of the hypothesis (total cost)

Regularization is any modification we make to a learning algorithm
that is intended to reduce its generalization error but not its training
error

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 76

Deep learning

Artificial Neural Networks (ANNs or NNs), also known as
connectionism
parallel distributed processing (PDP)
neural computation
computational neuroscience
representation learning
deep learning

have basic ability to learn

Applications: pattern recognition (speech, handwriting, object) ,
driving and fraud detection etc.

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 77

A brief history of neural networks#

300b.c. Aristotle Associationism, attempt. to understand brain
1873 Bain Neural Groupings (inspired Hebbian Rule)
1936 Rashevsky Math model of neutrons
1943 McCulloch/Pitts MCP Model (ancestor of ANN)
1949 Hebb founder of NNs, Hebbian Learning Rule
1958 Rosenblatt Perceptron
1974 Werbos Backpropagation
1980 Kohonen Self Organizing Map

Fukushima Neocogitron (inspired CNN)
1982 Hopfield Hopfield Network
1985 Hilton/Sejnowski Boltzmann Machine
1986 Smolensky Harmonium (Restricted Boltzmann Machine)

Jordan Recurrent Neural Network
1990 LeCun LeNet (deep networks in practice)
1997 Schuster/Paliwal Bidirectional Recurrent Neural Network

Hochreiter/Schmidhuber LSTM (solved vanishing gradient)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 78

A brief history of neural networks#

2006 Hilton Deep Belief Networks, opened deep learning era
2009 Salakhutdinov/Hinton Deep Boltzmann Machines
2012 Hinton Dropout (efficient training), AlexNet

History reminder
• known as ANN (and cybernetics) in the 1940s – 1960s
• connectionism in the 1980s – 1990s
• resurgence under the name deep learning beginning in 2006

Moving conditons:
– Increasing dataset sizes
– Increasing network sizes (computational resources)
– Increasing accuracy, complexity and impact in applications

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 79

Brains#

Recall: 1011 neurons of > 20 types, 1014 synapses, 1ms–10ms cycle
time. Signals are noisy “spike trains” of electrical potential

Axon

Cell body or Soma

Nucleus

Dendrite

Synapses

Axonal arborization

Axon from another cell

Synapse

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 80

McCulloch–Pitts “neuron”

Output is a nonlinear function (activation) of the inputs

aj ≡ g(inj) = g
(
ΣiWi,jai

)
= g

(
W⊤a

)

Output

Σ

Input
Links

Activation
Function

Input
Function

Output
Links

a0 = 1 aj = g(inj)

aj

g
injwi,j

w0,j

Bias Weight

ai

A neural network (NN) is a collection of units (neurons) connected
by directed links (graph)

An oversimplification of real neurons, but its purpose is to develop an
understanding of what networks of simple units can do

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 81

Implementing logical functions

Output is a linear (omitting g) function of the inputs, i.e., linear
model (including a bias by a dummy feature)

yj = ΣiWi,jxi

Recall: (binary linear) classification can be viewed as a neuron

AND

w0 = 1.5

w1 = 1

w2 = 1

OR

w2 = 1

w1 = 1

w0 = 0.5

NOT

w1 = –1

w0 = – 0.5

Ref. McCulloch and Pitts (1943): Boolean functions can be imple-
mented

Question: What about XOR?

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 82

Perceptron: a single neuron learning

What good is a single neuron?
Idea: supervised learning (input x, output y with target {0, 1})

• If t = 1 and z = W⊤x > 0

– then y = 1, so no need to change anything

• If t = 1 and z < 0

– then y = 0, so we want to make z larger

– Update
W′ ←−W + x

– Justification
W′⊤x = (W + x)⊤x

= W⊤x + x⊤x

= W⊤x + ||x||2

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 83

Perceptron learning rule

For convenience, let targets be {−1, 1} instead of our usual {0, 1}

Perceptron Learning Rule algorithm

Repeat:
For each training case (x(i), t(i))

z(i) ←WTx(i)

if z(i)t(i) ≤ 0
W←W + t(i)x(i)

Stop if the weights were not updated in this epoch

• Under certain conditions, if the problem is feasible, the perceptron
rule is guaranteed to find a feasible solution after a finite number of
steps
• If the problem is infeasible, all bets are off

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 84

Activation functions

(a) (b)

+1 +1

iniini

g(ini)g(ini)

Perceptrons as nonlinear functions
(a) is a step function or threshold function
(b) is a sigmoid function σ(x) = 1/(1 + e−x)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 85

Activation functions#

More
(c) rectified linear unit ReLU(x) = max{0, x}
– a piecewise linear function with two linear pieces
(d) softplus softplus(x) = log (1 + ex)
– a smooth version of ReLU
– the derivative of the softplus is the sigmoid

(e) tanh tanh(x) = e2x−1
e2x+1

– a scaled and shifted version of the sigmoid
– tanh(x) = 2σ(2x)− 1)

• All of them are monotonically nondecreasing (their derivatives g′

are nonnegative)
• Changing the bias weightWi,j moves the threshold location (strength
and sign of the connection)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 86

Single-layer perceptrons

Input

Units Units

Output
Wj,i

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1
Perceptron output

• Output units all operate separately — no shared weights
• Adjusting weights moves the location, orientation and steepness
of the cliff

Remark: the input units do not involve any calculations and are not
a layer

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 87

Expressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957)
⇒ Can represent AND, OR, NOT, majority, etc.

Represents a linear separator in input space

ΣjWjxj > 0 or W · x > 0

(a) x1 and x2

1

0
0 1

x1

x2

(b) x1 or x2

0 1

1

0

x1

x2

(c) x1 xor x2

?

0 1

1

0

x1

x2

But can not represent XOR

• Minsky & Papert (1969) pricked the neural network balloon led to
the first crisis

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 88

Network structures

Feedforward networks: one direction, directed acyclic graph (DAG)
– single-layer perceptrons
– multilayer perceptrons (MLPs) — so-called deep networks

Feedforward networks implement functions, have no internal state

Recurrent (neural) networks (RNNs): feed its outputs back into its
own inputs, dynamical system

– Hopfield networks have symmetric weights (Wi,j = Wj,i)
g(x) = sign(x), ai= ± 1; holographic associative memory

– Boltzmann machines use stochastic activation functions,
≈ MCMC (Markov Chain Monte Carlo) in Bayes nets

Recurrent networks have directed cycles with delays
⇒ has an internal state, can oscillate etc.

Neural architecture search: search (algorithms) for exploring the state
space of possible network architectures

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 89

Multilayer perceptrons

Networks (layers) are fully connected or locally connected
– numbers of hidden units typically chosen by hand

Input units

Hidden units

Output units ai

wj,i

aj

wk,j

ak

(Restaurant NN)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 90

Fully connected feedforward network

Computation graphs for feedforward network (FFN, usually denoted
as MLP)

W1,3

1,4W

2,3W

2,4W

W3,5

4,5W

1

2

3

4

5

MLPs = a parameterized family of nonlinear functions
(otherwise collapsing out the hidden to a single-layer linear model)

y5 = g(W3,5 · x3 +W4,5 · x4)
= g(W3,5 · g(W1,3 · x1 +W2,3 · x2) +W4,5 · g(W1,4 · x1 +W2,4 · x2))

hw = (x) = g2 (W2g1 (W1x))

Adjusting weights (parameters) changes the function: do learning

this way ⇐ supervised learning

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 91

Perceptron learning

Learn by adjusting weights to reduce error (loss) on training set
The squared error (SE) for an example with input x and true output
y is

E =
1

2
Err 2 ≡ 1

2
(y − hW(x))2

Perform optimization by gradient descent (loss-min):

∂E

∂Wj
= Err × ∂Err

∂Wj
= Err × ∂

∂Wj

(
y − g(Σn

j=0Wjxj)
)

= −Err × g′(in)× xj

Simple weight update rule

Wj ← Wj + α×Err × g′(in)× xj

E.g., +ve error ⇒ increase network output
⇒ increase weights on +ve inputs, decrease on -ve inputs

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 92

Example: learning XOR

The XOR function: input two binary values x1, x2, when exactly
one of these binary values is equal to 1, output returns 1; otherwise,
returns 0

Training set: X = {[0, 0]⊤, [0, 1]⊤, [1, 0]⊤, [1, 1]⊤}

Target function: y = g(X,W)

Loss function (SE): for an example with input x and true output y
is

E(W) =
1

4
Err 2 ≡ 1

4

∑

x∈X
(y − hW(x))2

Suppose that hW is choosed as a linear function
say, h(X,W, b) = W⊤X + b (b is a bias)
unable to represent XOR —— Why??

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 93

Example: learning XOR

Using a MLP with one hidden layer containing two hidden units (afore-
said)

– the network has a vector of hidden units h

Using a nonlinear function

h = g(W⊤
X + c)

where c is the biases, and affine transformation
– input X to hidden h , vector c
– hidden h to output y, scalar b

Need to use the ReLU defined by g(z) = max{0, z} that is applied
elementwise

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 94

Example: learning XOR

The complete network is specified as

y = g(X,W, c, b) = W⊤
2 max{0,W⊤

1 X + c} + b

where matrix W1 describes the mapping from X to h, and a vector
W2 describes the mapping from h to y

A solution to XOR, let
W1 = {[1, 1]⊤, [1, 1]⊤}
W2 = {[1,−2]⊤}
c = {[0,−1]⊤}, and
b = 0

Output: [0, 1, 1, 0]⊤

– The NN has obtained the correct answer for X

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 95

Expressiveness of MLPs∗

Theorem (universal approximation): All continuous functions w/ 2
layers, all functions w/ 3 layers

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1

hW(x1, x2)

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1

hW(x1, x2)

• Combine two opposite-facing threshold functions to make a ridge
• Combine two perpendicular ridges to make a bump
• Add bumps of various sizes and locations to fit any surface
• Proof requires exponentially many hidden units
• Hard to proof exactly which functions can(not) be represented for
any particular network

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 96

Deep neural networks

DNN: using deep (n-layers, n ≥ 3) networks to leverage large labeled
datasets

– it’s deep if it has more than one stage of nonlinear feature
transformation

– deep vs. narrow ⇔ “more time” vs. “more memory”
⇐ Deepness is critical, though no math proof

Let a DNN be fθ(s, a), where
– f : the (activate) function of nonlinear transformation
– θ : the (weights) parameters
– input s: labeled data (states)
– output a = fθ(s): actions (features)

Adjusting θ changes f : do learning this way (training)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 97

Backpropagation (BP)

Output layer: same as for single-layer perceptron

Wj,i ← Wj,i + α× aj ×∆i

where ∆i=Err i × g′(in i)

Hidden layer: backpropagate the error from the output layer

∆j = g′(inj)
∑

i

Wj,i∆i

Update: rule for weights in hidden layer

Wk,j ← Wk,j + α× ak ×∆j

– The gradient of the objective function w.r.t. the input of a layer
can be computed by working backward from the derivative w.r.t. the
output of that layer (reverse mode differentiation)
– Most neuroscientists deny that backpropagation occurs in the brain

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 98

BP derivation

The SE on a single example is defined as

E =
1

2

∑

i

(yi − ai)
2

where the sum is over the nodes in the output layer

∂E

∂Wj,i
= −(yi − ai)

∂ai
∂Wj,i

= −(yi − ai)
∂g(in i)

∂Wj,i

= −(yi − ai)g
′(in i)

∂in i

∂Wj,i
= −(yi − ai)g

′(in i)
∂

∂Wj,i

∑

j

Wj,iaj

= −(yi − ai)g
′(in i)aj = −aj∆i

– Objective (loss) functions: SE, likelihood, cross-entropy etc.
– Gradients can be computed by the automatic differentiation
– SGD commonly used in training

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 99

BP derivation#

∂E

∂Wk,j
= −

∑

i

(yi − ai)
∂ai

∂Wk,j
= −

∑

i

(yi − ai)
∂g(in i)

∂Wk,j

= −
∑

i

(yi − ai)g
′(in i)

∂in i

∂Wk,j
= −

∑

i

∆i
∂

∂Wk,j

∑

j

Wj,iaj

= −
∑

i

∆iWj,i
∂aj
∂Wk,j

= −
∑

i

∆iWj,i
∂g(inj)

∂Wk,j

= −
∑

i

∆iWj,ig
′(inj)

∂inj

∂Wk,j

= −
∑

i

∆iWj,ig
′(inj)

∂

∂Wk,j

(
∑

k

Wk,jak

)

= −
∑

i

∆iWj,ig
′(inj)ak = −ak∆j

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 100

BP learning algorithm

def BP-Learning(examples,network)

inputs: examples, a set of examples, each /w in/output vectors X and Y

local variables: ∆, a vector of errors, indexed by network node

repeat

for each weigh wi,j in networks do

wi,j← a small random number

for each example (X , Y) in examples do

for each node i in the input layer do

ai← xi
for l = 2 to L do

for each node j in layer l do

inj←Σi wi ,jai
aj← g(inj)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 101

BP learning algorithm

for each node j in the output layer do

Σ[j]← g ′(inj)× (yj − aj)

for l = L − 1 to 1 do

for each node i in the layer l do

∆[i]← g ′(ini)Σj wi ,j∆[j]

for each weight wi,j in network do

wi,j←wi ,j + α × ai × ∆[j]

until some stopping criterion is satisfied

return nerwork

End-to-end learning: the system is trained based on BP in an end-
to-end fashion from input/output pairs

need only about how the overall system should be structured; no
need to know exactly what should do its inputs/outputs

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 102

BP learning

At each epoch, sum gradient updates for all examples and apply

Training curve for 100 restaurant examples: finds exact fit

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350 400

T
o
ta

l
e
rr

o
r

o
n
 t
ra

in
in

g
 s

e
t

Number of epochs

DNNs are quite good for complex pattern recognition tasks,
but resulting hypotheses cannot be interpreted (black box method)
Problems: gradient vanishing (or exploding), slow convergence, lo-
cal minima

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 103

Convolutional neural networks

CNNs: DNNs that use convolution in place of general matrix multi-
plication (in at least one of their layers)

• locally connected networks
spatial invariance at the local region, cutting down the number

of weights, e.g. for an image, if each local region has l ≪ n pixels,
then there will be weights ln≪ n2 in all

• for processing data that has a known grid-like topology
e.g., time-series data, as a 1D grid taking samples at regular time

intervals; image data, as a 2-D grid of pixels

• any NN algorithm that works with matrix multiplication and does
not depend on specific properties of the matrix structure should work
with convolution

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 104

Convolutional function

s(t) = (x ∗ w)(t)
=
∫
x(a)w(t− a)da

=
∑∞

a=−∞ x(a)w(t− a)
= XW (dot product of tensors)

• x: input
• w: kernel (filter)
– valid probability density function or the output will not be a weighted
average
– needs to be 0 for all negative arguments, or will look into the future
(which is presumably beyond the capabilities)
• s: feature map

Smoothed estimate of the input data, weighted average (more recent
measurements are more relevant)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 105

Example: convolutional operation

A 2D convolution operation with a kernel of size l = 2 × 2 and a
stride s = 0

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 106

Convolutional operation

Convolution with a single kernel can extract only one kind of feature
There may be d kernels, with a stride of 1, the output will be d times
larger

a n-dimensional input matrix becomes a n+1-dimensional matrix
of hidden units, where the n + 1th dimension is of size d

each channel carries information from one feature extracted by a
kernel

Remark∗

Don’t implement by a program with nested loops
Can be formulated as a single matrix (tensor) operation

– matrix is more efficient than loops, e.g., Numpy (Python) by
using GPU/TPU

– the weight matrix is spare (mostly zeroes), and convolution is
a linear matrix operation that gradient descent that can be applied
easily and effectively

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 107

Pooling#

A pooling layer in an NN summarizes a set of adjacent units from
the preceding layer with a single value (fixed rather than learned, no
activation function) ⇒ downsampling
• Average-pooling: the average value of its inputs
• Max-pooling: the maximum value of its inputs

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 108

Residual networks#

Need to build very deep networks (hundreds of layers) that avoid the
vanishing gradients

Idea: a layer i should perturb the representation from the previous
layer i− 1 rather than replace it entirely

z(i) = f
(
z(i−1)

)
= g(i)

(
W(i)z(i−1)

)

i-layer completely replaces the representation from i− 1-layer

z(i) = g(i)
r

(
z(i−1) + f

(
z(i−1)

))

gr – the activation functions for the residual layer

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 109

Residual networks

f – residual, perturbing the default behavior of passing i-layer through
to i− 1-layer

typically an NN with one nonlinear layer combined with one linear
layer

f (z) = Vg(Wz)

V, W – learned weight matrices with the bias weights added

If the learned perturbation is small, the next layer is close to being a
copy of the previous layer

Set V = 0 to disable a particular layer, the f disappears

z(i) = gr

(
z(i−1)

)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 110

Residual networks

Let the activation function be ReLU

z(i) = gr

(
z(i−1)

)
= ReLU

(
z(i−1)

)

= ReLU
(
ReLU

(
in(i−1)

))
= ReLU

(
in(i−1)

)

= z(i−1)

A layer with zero weights simply passes its inputs through with no
change

To avoid catastrophic failure of the propagation for bad choices of the
parameters, residual networks propagate information by the design

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 111

Batch normalization#

Batch normalization (BN): improves the rate of convergence of SGD
by rescaling the values generated at the internal layers of the network
from the examples within each minibatch

Consider a node z: the values of z for the m examples in a minibatch
are z1, · · · , zm

BN: replacing each zi with a new quantity ẑi

ẑi = γ
zi − µ√
ǫ + σ2

+ β

– µ: the mean value of z across the minibatch
– σ: the standard deviation of z1, · · · , zm
– ǫ: a small constant added to prevent division by zero
– γ, β: learned parameters

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 112

Dropout#

Dropout: at each step of training, applies one step of BP learning by
deactivating a randomly chosen subset of the units

– reducing the testing error (better generalization) of a network
at the cost of making it harder to fit the training set

Consider using SGD with minibatch size m
for each minibatch, dropout applies to every node (in the hidden

layers) of the network
with probability p (say p = 0.5 for hidden p = 0.8 for input),

the unit output is multiplied by a factor of 1/p; otherwise, the unit
output is fixed at zero
– Produced a thinned network (about half original units)
– At test time, the model is run with no dropout

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 113

Input encoding

Input encoding: data x

• Factored data: encoding just as the attribute values (Boolean,
numeric or real values)
• Images: RGB, representing color images with three numbers

per pixel (principle of trichromacy)
– an RGB image of size X ×Y pixels can be thought of as 3XY

integer-valued attributes (in the range {0, · · · , 255})

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 114

Output layer

Output layer: data x

• Encoding the raw data values into actual values (the same as the
input encoding)
• Loss function: prediction ŷ

– SE (squared-error), MLE (negative log-likelihood)
– CE (cross-entropy): H(P,Q) = Ez∼P (z)[logQ(z)] =

∫
P (z) logQ(z)dz

• Softmax layer: needing to minimize MLE (CE) by interpreting the
output as a probability summing to 1

outputs a vector of d values, given a vector of input values in
= 〈in1, · · · , ind〉

the k-th element of that output vector is given by softmax function

softmax(in)k =
eink

∑d
k′=1 e

ink′

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 115

Hidden layers

End-end training hypothesis: for why DNN work well is that the
compositional end-to-end transformation that maps from input to
output

– learning at each layer a meaningful representation for the input
– internal nodes only used activation functions such as ReLU

Write fθ(ht) = fθ(ht,xt,yt) to indicate the t-th hidden layer of fθ
with the deepness T (t ∈ N)

– (ht−1(x1), · · · , ht−1(xt−1)) are the input vectors from the pre-
vious layer

– yt = ht(xt) is the output vector
— at every hidden layer, updating the previous hidden layer ht−2,

which summarizes (x1, · · · ,xt−2), with a new representation xt−1,
resulting in current hidden layer ht−1

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 116

Example: Drawing a CNN picture

import matplotlib.pyplot as plt

import matplotlib.patches as patches

Create figure and axes

fig, ax = plt.subplots(figsize=(8, 6))

Define layers and their sizes

layers = ['Input', 'Convolutional', 'Pooling', 'Fully Connected', 'Output']

sizes = [1, 3, 2, 1, 1]

Plot each layer

x_offset = 0

for layer, size in zip(layers, sizes):

rect = patches.Rectangle((x_offset, 0), size, 1, linewidth=2, edgecolor='b', facecolor='none')

ax.add_patch(rect)

ax.text(x_offset + size / 2, 0.5, layer, ha='center', va='center')

x_offset += size

Set axis limits and hide axis

ax.set_xlim(0, sum(sizes))

ax.set_ylim(0, 1)

ax.axis('off')

Show plot

plt.show()

Note: Ask an AI assistant to draw

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 117

Recurrent neural networks

RNNs: DNNs for processing sequential data

– process a sequence of values x(1), ..., x(τ)

e.g., natural language processing (speech recognition, machine
translation etc.)

– can scale to much longer sequences than would be practical for
networks without sequence-based specialization

– can also process sequences of variable length

Learning: predicting the future from the past

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 118

Recurrence

Classical form of a dynamical system

s(t) = f (s(t−1);θ) (1)

where s(t) is the state

Recurrence: the definition of s at time t refers back to the same
definition at time t− 1

Dynamical system driven by an external signal x(t)

h(t) = f (h(t−1),x(t);θ) (2)

h (except for input/output): hidden units, and the state contains
information about the whole past sequence

Any function involving recurrence can be considered an RNN

RNN learns to use h(t) as a kind of lossy summary of the task-relevant
aspects of the past sequence of inputs up to t

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 119

RNN

zt = fw (zt−1,xt) = gz (Wz,zzt−1 +Wx,zxt) ≡ gz (inz,t)
ŷt = gy (Wz,yzt) ≡ gy (iny,t)
– input x, hidden z, output y

(a) An RNN hidden layer z with recurrent connections
(b) Unfolded computational graph

RNN (Markov) assumption: the hidden state zt suffices to capture
the information from all previous inputs

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 120

BP through time#

∂L

∂wz,z
=

∂

∂wz,z

T∑

t=1

(yt − ŷt)
2 =

T∑

t=1

−2 (yt − ŷt)
∂ŷt
∂wz,z

=

T∑

t=1

−2 (yt − ŷt)
∂

∂wz,z
gy (iny,t)

=

T∑

t=1

−2 (yt − ŷt) g
′
y (iny,t)

∂

∂wz,z
iny,t

=

T∑

t=1

−2 (yt − ŷt) g
′
y (iny,t)

∂

∂wz,z
(wz,yzt + w0,y)

=

T∑

t=1

−2 (yt − ŷt) g
′
y (iny,t)wz,y

∂zt
∂wz,z

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 121

BP through time#

∂zt
∂wz,z

=
∂

∂wz,z
gz (inz,t) = g′z (inz,t)

∂

∂wz,z
inz,t

= g′z (inz,t)
∂

∂wz,z
(wz,zzt−1 + wx,zxt + w0,z)

= g′z (inz,t)

(
zt−1 + wz,z

∂zt−1
∂wz,z

)

where the last line uses the rule for derivatives of products
∂(uv)/∂x = v∂u/∂x + u∂v/∂x

Problems: vanishing gradient if wz,z < 1, exploding gradient if wz,z >
1

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 122

RNN models∗

RNN architectures are designed with the goal of enabling information
to be preserved over many time steps

• Long short-term memory (LSTM): a variant of basic RNN

• Gated recurrent unit (GRU): a variant of LSTM

Theorem: Any function computable by a Turing machine can be
computed by an RNN of a finite size

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 123

Deep models∗

• Autoregressive model (AR): each element xi of the data vector x
is predicted based on other elements of the vector

e.g., time series data, the order k predicts xt given xt−k, · · · , xt−1
– conditional distribution P (xt | xt−k, . . . , xt−1)

• Autoencoder (AE): two parts
– encoder f : mapping from x to a representation ẑ
– decoder g: mapping from a representation ẑ to observed data

x

– the model is trained so that x ≈ g(f (x)) (the encoding process
is roughly inverted by the decoding process)

• Variational autoencoder (VAE): using variational methods in AE

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 124

Deep models∗

• Generative adversarial network (GAN): a pair
– generator: mapping values from z to x to produce samples from

the distribution Pw(x)
say, sampling z from a Gaussian and then passes it through a deep

network hw to obtain x
– discriminator: a classifier trained to classify inputs x as real

(drawn from the training set) or fake (created by the generator)

• Diffusion model (DM): generating new data samples by gradually
adding noise to data and then learning to reverse this process to
reconstruct the original data from the noise

• State space model (SSM): describing the evolution of a system’s
state over time with hidden states that change dynamically

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 125

Deep learning#

Deep learning = representations (features) learning
– introducing representations that are expressed in terms of other

simpler representations
– data ⇒ representation (learning automatically)

Pattern recognition: fixed/handcrafted features extractor
→ features extractor→ (mid-level features)→ trainable classifier

Deep learning: representations are hierarchical and trained
→ low-level features → mid-level features → high-level features

→ trainable classifier →
– the entire machine is trainable

E.g., Image: pixel → edge → texton → motif → part → object
Speech: sample → · · · → phone → phoneme → word
Text: character → word → word groups → clause → sentence →
story

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 126

Example: Games as perception∗

Alpha0 Go Implementation
– raw board representation: 19× 19× 17
historic position st = [Xt, Yt, Xt−1, Yt−1, · · · , Xt−7, Yt−7, C]

Treat as two-dimensions images
– CNN has a long history in computer Go by self-play reinforce-

ment learning (Schraudolph N et al., 1994)

Alpha0 Go: EvalFn ⇐ stochastic simulation ⇐ (deep) learning

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 127

Deep vs shallow∗

Deep and narrow vs. shallow and wide ⇔ “more time” vs. “more
memory”

– algorithm vs. look-up table
– few functions can be computed in 2 steps without an exponen-

tially large lookup table
– using more than 2 steps can reduce the “memory” by an expo-

nential factor

All major deep learning frameworks use modules
– Torch7, Theano, TensorFlow etc.

Any architecture (connection graph) is permissible

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 128

Deep learning fantasist∗

• Idealist: some people hope that a single deep learning algorithm
to study many or even all of these application areas simultaneously

– finally, deep learning = AI = principle of intelligence

• Brain: deep learning is more likely to cite the brain as an influence,
but should not view deep learning as an attempt to simulate the brain

– today, neuroscience is regarded as an important source of inspi-
ration for deep learning, but it is no longer the predominant guide for
the field

– differ from Artificial Brain

• Math: deep learning draws inspiration from especially applied math
– maybe deep learning replaces applied math

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 129

Deep learning ⊂ machine learning ⊂ AI

Deep learning faces some big challenges
– formulating unsupervised deep learning
– uninterpreted black-box
– how to do reasoning etc.

Reading LeCun&Bengio&Hinton, Deep learning, Nature 521, 436-

444, 2015

www.nature.com/nature/journal/v521/n7553/full/nature14539.html

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 130

Mathematical analysis of deep learning∗

Questions have not been answered within classical learning theory and
mathematics — not explainable

• The outstanding generalization of overparametrized neural net-
works
• The role of depth in architectures
• The absence of the curse of dimensionality
• The successful optimization performance despite the non-convexity
of the problem
• What features are learned, why deep architectures perform excep-
tionally well
• Which fine aspects of architecture affect the behavior of a learning
task in which way

A newly emerging field for math

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 131

Example: Alpha0∗

Recall the design of Alpha0 algorithm

1. combine deep learning in an MCTS algorithm
– a single DNN for both
police for breadth pruning, and
value for depth pruning

2. in each position, an MCTS search is executed guided by the DNN
with data by self-play reinforcement learning
without human knowledge beyond the game rules

3. asynchronous multi-threaded search that executes simulations
on CPUs, and computes DNN in parallel on GPUs

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 132

Example: Alpha0 deep learning

A DNN fθ with parameters θ

a. input: raw board representation of the position and its history
st, πt, zt (samples from SelfPlay)

b. passing it through many convolutional layers (CNN) with θ

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 133

Example: Alpha0 neural network training

Deep learning: fθ training

c. updating θ (for best (π, z))
– to maximize the similarity of pt to the search probabilities πt
– to minimize the error between the predicted winner vt and the

game winner z
(p, v) = fθ(s), l = (z − v)2 − πT logp + c||θ||2

where c is a parameter controlling the level of L2 weight regularization
(to prevent overfitting)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 134

Example: Alpha0 deep learning

d. output (p, v) = fθ(s): move probabilities and a value
— vector p: the probability of selecting each move a (including

pass), pa = P (a | s)
– a scalar evaluation v: the probability of the current player win-

ning from position s

(MCTS outputs probabilities π of playing each move from p)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 135

Example: Alpha0 deep learning pseudocode

def Dnn(st)

inputs: fθ, Cnn with parameters θ

// say, 1 convolutional block + 39 residual blocks

// policy head (2 layers) + value head (3 layers)

st: historic data, initially random

while within computational budget do

for each st do

data←SelfPlay(st,πt,zt)

(pt,vt)←Cnn(fθ(data))

πt←Mcts(fθ(st))

st←Update(at,πt)

return θ(BestParameters(f))

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 136

Reinforcement learning

Reinforcement learning (RL): learn what to do in the absence of la-
beled examples of what to do

– learn from success (reward) and failure (punishment)

RL vs. planning and supervised/unsupervised learning
– given model of how decisions impact the world (replanning)
– rewards as labels, not correct labels, or no labels

Imitation learning: Learns from the experience of others, assumed
input demos of good policies

– reduces RL to supervised learning

In many domains, reinforcement learning is the only feasible way to
train a program to perform certain tasks

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 137

RL agents

Recall agent architectures

• Utility-based agent: learn a utility function

• Q-learning agent: action-utility function, giving the expected util-
ity of taking a given action in a given state

• Reflex agent: learn a policy that maps directly from states to
actions

Components of an RL agent
– Model: the world changes in response to the action
– Policy: function mapping agent’s states to action
– Value (utility): future rewards from being in a state and/or

action when following a particular policy

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 138

Exploration and exploitation#

Recall
• Exploration: trying new things that enable the agent to make
better decisions in the future
• Exploitation: choosing actions that are expected to yield good
rewards given experience

Often there may be an exploration-exploitation tradeoff

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 139

Passive and active RL

In passive learning, the agent’s policy π is fixed
– in state s, execute the action π(s)
– to learn the utility function Uπ(s)

Recall: MDP (Markov decision process) ⇒ MRP=MDP+rewards

– to find an optimal policy π(s) 1 2 3

1

2

3

− 1

+ 1

4

But passive learning agent does not know the transition model P (s′|s, a)
and the reward function R(s)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 140

Passive and active RL

def Passive-RL-Agent(e)

persistent: U, a table of utility estimates

N, a table of frequencies for states

M, a table of transition probabilities from state to state

percepts, a percept sequence (initially empty)

add e to percepts

increment N[State[e]]

U←Update(U, e, percepts,M,N)

if Terminal?[e] then percepts← the empty sequence

return the action Observe

An active learning agent decides what actions to take
Learning action-utility functions instead of learning utilities
— Q-learning

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 141

Q-learning

Q-functioln Q(s, a): value of doing action a in state s
Q-value: U(s) = maxaQ(s, a)

– not need a model of P (s′|s, a) (model-free)
– representation by a lookup table or function approximation
– – with function approximation, reduce to supervised learning
(learning a model for an observable environment is supervised

learning, because the next percept gives the outcome state)
– – – any supervised learning methods can be used

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 142

Policy search

Idea: iterating the policy as long as its performance improves, then
stop

a policy π can be represented by a collection of parameterized Q-
functions (one for each action), and take the action with the highest
predicted value

π(s) = maxaQ̂θ(s, a)

– Q-function could be a linear function of the parameters, or
a nonlinear function, such as a neural network
thus, policy search results in a process that learns Q-functions

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 143

Policy interation

PI algorithm
1. Initially π0(s) randomly for all s
2. While |πi − πi−1| > 0 (L1 norm measures if the policy changed)
• Policy evaluation by computing Qπi

• Policy improvement by π(s) = maxaQ̂θ(s, a)
define πi+1(s) = argmaxaQ̂

πi(s, a), ∀s

Optimization
– policy gradient by▽θπ(θ) , or by score function as▽θ log π(θ)(s, a)
– empirical gradient (gradient-free) by hill climbing, genetic algo-
rithms etc.

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 144

Deep reinforcement learning

DRL: use deep neural networks to represent
– value function
– policy model
Optimize loss function by SGD (stochastic gradient descent)

Policy evaluation Qπi by function approximation, using deep learning
– nonlinear function (differential)
– advantages of deep learning
– – scale up to making decisions in huge domains, etc.

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 145

Deep Q-learning#

DQN (deep Q-networks): represent value function by a deep neural
network (Q-network) with weights θ

• Q̂(s, a, θ) ≈ Q(s, a)
• Minimize MSE loss by SGD

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 146

Actor-critic algorithms#

• Actor: the policy
• Critic: value function (Q-funciton)
• Reduce variance of policy gradient

Policy evaluation
– fitting value function to policy

Design
– One network (with two heads) or two networks

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 147

Self-play#

A RL agent learns to improve its performance by playing against itself
Self-play algorithm
1. Initialization: Some basic policy
2. Self-Play Iterations:

2.1 the agent plays the game against itself using its current policy
2.2 the agent learns from its experiences, typically using tech-

niques like Q-learning or policy gradient methods
2.3 the agent updates its policy to improve its performance based

on the outcomes of these games
3. Policy Improvement:

3.1 after a certain number of iterations or when a performance
criterion is met, the agent evaluates its current policy

3.2 the agent may then update its policy based on the learned
experiences, aiming to improve its performance in future games
4. Repeat: The process iterates, learning from its own experiences

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 148

Example: Alpha0 self-play training∗

Reinforcement learning: Play a game s1, · · · , sT against itself
a. input: current position with search probability π (αθ)
b. in each st, an MCTS αθ is executed using the latest DNN fθ
c. moves are selected according to the search probabilities computed

by the MCTS, at ∼ πt
d. the terminal position sT is scored according to the rules of

the game to compute the game-winner z
e. output: sample data of a game

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 149

Example: Alpha0 self-play training pseudocode

def SelfPlay(state,π)

inputs: game, s1, · · · , sT
create root node with state s, initially random play

while within computational budget do

for each st do

(at,πt)←Mcts(st,fθ)

data←DataMaking(game)

z←Win(sT)

return z(Winner(data)) //training data

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 150

Statistical learning+#

Learning as a form of uncertain reasoning from observations
Learning a probabilistic model (say, Bayesian networks)
given data that are assumed to be generated from that model,

called density estimation

Bayesian learning: updating of a probability distribution over the hy-
pothesis space (all the hypotheses)

learning is reduced to probabilistic inference

H is the hypothesis variable with values . . . hi . . ., prior P(H)
The jth observation dj gives the outcome of random variableDj ∈ D

training data d= d1, . . . , dN

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 151

Bayesian learning

Given the data so far, each hypothesis has a posterior probability by
Bayes’ rule

P (hi|d) =
P (d|hi)P (hi)

P (d)
= αP (d|hi)P (hi) ∝ P (d|hi)P (hi)

P (d|hi) is called the likelihood

Posterior =
likelihood× prior

Evidence

Predictions about an unknown quantityX use a likelihood-weighted average
over the hypotheses

P(X|d) = Σi P(X|d, hi)P (hi|d) = Σi P(X|hi)P (hi|d)
assumed that each hypothesis determines a distribution over X

No need to pick one best-guess hypothesis

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 152

Example#

Suppose there are five kinds of bags of candies with prior distribution
10% are h1: 100% cherry candies
20% are h2: 75% cherry candies + 25% lime candies
40% are h3: 50% cherry candies + 50% lime candies
20% are h4: 25% cherry candies + 75% lime candies
10% are h5: 100% lime candies

Then we observe candies drawn from some bag:

What kind of bag is it? What flavour will the next candy be?

P (d|hi) =
∏

j P (dj|hi) (i.i.d. assumption)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 153

Posterior probability of hypotheses

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

P
o

s
te

ri
o

r
p

ro
b

a
b

ili
ty

 o
f

h
y
p

o
th

e
s
is

Number of samples in d

P(h1 | d)
P(h2 | d)
P(h3 | d)
P(h4 | d)
P(h5 | d)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 154

Prediction probability

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

P
(n

e
x
t
c
a
n
d
y
 i
s
 l
im

e
 |
 d

)

Number of samples in d

• Agrees with the true hypothesis
• Optimal (given the hypothesis prior, another prediction is less right)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 155

MAP approximation

Summing over the hypothesis space is often intractable
(Recall in DT, e.g., 18,446,744,073,709,551,616 Boolean functions
of 6 attributes) ⇐ limit of Bayesian learning ⇒ approximation

Maximum a posteriori (MAP) learning: choose hMAP maximizing
P (hi|d)

i.e., argmaxiP (d|hi)P (hi) or argmaxi logP (d|hi) + logP (hi)

Log terms can be viewed as (negative of)
bits to encode data given hypothesis + bits to encode hypothesis
e.g., no bits are required such as h5, log2 1 = 0

This is the basic idea of minimum description length (MDL) learning

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 156

ML approximation

For large datasets, prior becomes irrelevant
(no reason to prefer one hypothesis over another a priori)

Maximum likelihood (ML) learning (ML estimate): choose hML max-
imizing P (d|hi)

i.e., simply get the best fit for the data
identical to MAP for uniform prior (P (d|hi)P (hi) = P (d|hi))

ML is the non-Bayesian statistical learning

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 157

Parameter and structure

Parameter learning: finding the numerical parameters for a probability
model whose structure is fixed

e.g., learning the conditional probabilities in a Bayesian network
with a given structure

ML parameter learning: maximizing L(d|hθ) = logP (d|hθ), θ is a
parameter

by dL(d|hθ)
dθ = 0 ⇐ numerical optimization

Structure learning: finding the structure of a probabilistic model (e.g.,
Bayes net) from data by fitting the parameters

Bayesian structure learning: search for a good model by adding the
links and fitting the parameters (e.g., hill-climbing etc.)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 158

Bayes classifier#

PGM (Bayesian network) makes inference and learning tractable
for binary n variables, reduce the joint distribution from 2n to 2n

Naive Bayes classifier: features are conditionally independent of each
other, given the class

P (hi|d) ∝ P (d|hi)P (hi) =
∏

j

P (dj|hi)P (hi)

• Learning: maximize likelihood by ML estimate — training

• Inference: predict the class by performing inference applying Bayes’
rule — test

Can be applied to Bayesian networks (PGM)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 159

Generative vs discriminative models

Two approaches to classification

• Generative model: model the distribution of inputs given the target
To solve: what does each class “look” like?
• Build a model of P (d|h)
• Apply Bayes rule (say, Bayes classifier etc.)

• Discriminative model: estimate the conditional distribution (pa-
rameters) of the target given the input

To solve: how do it separate the classes?
• Learn P (h|d) directly
• From inputs (labeled examples) to classes (say, decision tree

etc.)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 160

Expectation maximization∗

EM (expectation-maximization): learning a probability model with
hidden (latent) variables

– not observable data, causal knowledge
– dramatically reduce the parameters (Bayesian net)

Smoking Diet Exercise

Symptom1 Symptom2 Symptom3

(a) (b)

HeartDisease

Smoking Diet Exercise

Symptom1 Symptom2 Symptom3

2 2 2

54

6 6 6

2 2 2

54 162 486

(a) 78 parameters, (b) 708 parameters

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 161

Clustering∗

Unsupervised clustering: discerning multiple categories in a dataset
– unsupervised because the category labels are not given
– clustering by the data generated from a mixture distribution

P (x) =
∑k

i=1 P (C = i)P (x | C = i)
– – a distribution has k components (r.v. C), each of which is

a distribution (say multivariate Gaussian, and so Gaussians mixture
model (GMM))

– – x refers to the values of the attributes for a data point
– – – fit the parameters of a Gaussian by the data from a compnt.
– – – assign each data to a component by the parameters

Problems: we know neither the assignments nor the parameters
⇐ how to generate?

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 162

Gaussians mixture model∗

Gaussians mixture model (GMM): most common mixture model
A GMM represents a distribution as

P (x) =

k∑

i=1

πiN (x | µi,Σi)

with πi the mixing coefficients, where
∑k

i=1 πi = 1 and πi ≥ 0

• GMM is a density estimator
• Theorem: GMMs are universal approximators of densities (if
there are enough Gaussians). Even diagonal GMMs are universal
approximators
• In general mixture models are very powerful but harder to optimize
⇐ EM

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 163

Example: EM∗

(a) A Gaussian mixture model with three components
(b) 500 data points sampled from the model in (a)
(c) The model reconstructed by EM from the data in (b)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 164

EM Algorithm∗

Idea: pretend that we know the parameters of the model
infer the probability that each data belongs to each compnt.

refit the components to the entire data set
with each data weighted by the probability that it belongs to

the process iterates until convergence

1. E-step: Compute the posterior probability over C given current
model ⇐ deriving as expectation

2. M-step: Assuming that the data really was generated this way,
change the parameters of each Gaussian to maximize the proba-
bility that it would generate the data it is currently responsible for
⇐ maximum likelihood

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 165

EM Algorithm∗

General form of EM algorithm

θ(i+1) = argmaxθ
∑

c

P (C = c | x, θ(i))L(x,C = c | θ)

– θ: the parameters for the probability model
– C: the hidden variables
– x: the observed values in all the examples
– L: Bayesian networks, HMMs etc.

Derive closed form updates for all parameters

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 166

EM Algorithm∗

1. Initialize the mixture-model parameters arbitrarily, for GMM
2. Iterate until convergence:
E-step: Compute the probabilities pij = P (C = i | xj), where the
datum xj was generated by component i

i.e., pij = αP (xj | C = i)P (C = i) (Bayes’ rule)
where P (xj | C = i) is the probability at xj of the ith Gaussian

wi = P (C = i) is the weight for the ith Gaussian
define ni =

∑
j pij , the number of data points assigned to i

M-step: Compute the new mean, covariance, and component weights
using the following steps in sequence

µi ←
∑

j pijxj/ni

Σi ←
∑

j pij(xj − µi)(xj − µi)
T/ni

wi ← ni/N , where N is the total number of data points
3. Evaluate log-likelihood and check for convergence

lnP (x | π, µ,Σ) =∑N
n=1(

∑k
i=1 ln(πiN (xn | µi,Σi))

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 167

Transfer learning∗

Assumption of learning already: the (training and test) data are drawn
from the same feature space and distribution

may not hold in many real-world applications

Transfer learning (knowledge transfer): learning in one domain, but
only having training data in another domain where the data may be
in a different feature space or distribution

– greatly improve the performance of learning by avoiding expen-
sive data labeling efforts

– people can intelligently apply knowledge learned previously to
solve new problems (learning to Learn or meta-learning)

• What to transfer
• How to transfer
• When to transfer

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 168

Inductive transfer learning

ITL: the target task is different from the source task, no matter when
the source and target domains are the same or not

– labeled data in the source domain are available (instance-transfer)
– – there are certain parts of the data that can still be reused to-

gether with a few labeled data in the target domain
– labeled data in the source domain are unavailable while unla-

beled data in the source domain are available (self-taught learning)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 169

Inductive instance transfer learning

Assume that the source and target domain data use the same set
of features and labels, but the distributions of the data in the two
domains are different (say, classification)

– some of the source domain data may be useful in learning for the
target domain but some of them may not and could even be harmful

1. start with the weighted training set, each example has an associ-
ated weight (importance)
2. attempt to iteratively re-weight the source domain data to reduce
the effect of the “bad” source data while encouraging the “good”
source data to contribute more for the target domain
3. for each round of iteration, train the base classifier on the weighted
source and target data, the error is only calculated on the target data
4. update the incorrectly classified examples in the target domain and
the incorrectly classified source examples in the source domain

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 170

Ensemble learning∗

An ensemble of predictors is a set of predictors whose individual de-
cisions are combined in some way to classify new examples

E.g., (possibly weighted) majority vote

For this to be nontrivial, the classifiers must differ somehow, e.g.
Different algorithm
Different choice of hyperparameters
Trained on different data al Trained with a different weighting of

the training examples

Ensembles are usually trivial to implement. The hard part is deciding
what kind of ensemble you want, based on your goals

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 171

Bagging learning

Train classifiers independently on random subsets of the training data

Bagging (bootstrap aggregation)
Take a single dataset D with n examples
Generate m new datasets, each by sampling n training examples

from D, with replacement
Average the predictions of models trained on each of these datasets

Random forests = bagged decision trees, with one extra trick to decor-
relate the predictions

When choosing each node of the decision tree, choose a random
set of d input features, and only consider splits on those features

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 172

Boosting learning

Train classifiers sequentially, each time focusing on training data
points that were previously misclassified

Weak learner is a learning algorithm that outputs a hypothesis (e.g.,
a classifier) that performs slightly better than chance, e.g., it predicts
the correct label with probability 0.6

not capable of making the training error very small
Can we combine a set of weak classifiers to make a better ensem-

ble?

We are interested in weak learners that are computationally efficient
Decision trees
Even simpler: Decision Stump
– a decision tree with only a single split

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 173

AdaBoost algorithm

AdaBoost (Adaptive Boosting)

1. At each iteration we re-weight the training samples by assign-
ing larger weights to samples (i.e., data points) that were classified
incorrectly

2. We train a new weak classifier based on the re-weighted samples

3. We add this weak classifier to the ensemble of classifiers. This is
our new classifier

4. We repeat the process many times

The weak learner needs to minimize weighted error

AdaBoost reduces bias by making each classifier focus on previous
mistakes

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 174

Federated learning∗

Federated learning (FL): many clients (edge device, e.g., mobile phones
or IoT devices) collaboratively train a model under the orchestration
of a central server while keeping the training data decentralized

– Ref: McMahan H et al., Communication-efficient learning of
deep networks from decentralized data, arxiv, 2016

– Challenges: an unbalanced and non-iid data partitioning across
a massive number of unreliable devices with limited communication
bandwidth

FL Principles
– focused collection and data minimization
– systemic privacy risks
– lower costs than traditional centralized learning

E.g., Google Gboard mobile keyboard, TensorFlow Federated

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 175

Federated vs. peer-to-peer learning

FL vs. fully decentralized (peer-to-peer, p2p) learning
– Orchestration
– – a central orchestration server or service organizes the training,

but never sees raw data vs. no centralized orchestration
– Wide-area communication
– – Hub-and-spoke (with the hub representing a coordinating ser-

vice provider and the spokes connecting to clients) vs. peer-to-peer
(with a possibly dynamic connectivity graph)

E.g., p2p in blockchain

Often applied to similar problems, say, a central authority may still
be in charge of p2p learning

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 176

Data partitioning

Goal of FL: to learn a single global model that minimizes the empirical
risk function over the entire training dataset (i.e., the union of the
data across all the clients)

Using deep learning (by SGD), say, Federated Averaging algorithm
(local-update or parallel SGD)

In FL, data can be non-iid in many ways
– dependence and non-identicalness: due to each client corre-

sponding to a particular user/location/time
– if the data is in an insufficiently-random order, e.g. ordered by

time, then independence is violated locally as well

E.g., client devices typically need to meet eligibility requirements in
order to participate in training

The data is assumed to be partitioned by examples or relevant features

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 177

Federated averaging algorithm

def ServerExecute(client data)

local variables: M, clients per round

T, total communication rounds

initialize x0 // all clients have the same amount of data

for each round t = 1, 2, . . . , T do

St← random set of M clients

for each client in St in parallel do

xit+1←ClientUpdate(i, xt)

xt+1←
∑M

k=1
1
M xit+1

return global data

def ClientUpdate(i, x)

local variables: K, local steps per round

for local step j = 1, . . . , K do

x←x− η∇ f (x; z) for z ∼ Pi // local SGD

return local data

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 178

Explanation-based learning∗

Explanation-Based Learning (EBL) is a method of generalization that
extracts general rules from individual observations (specific examples)

Idea: knowledge representation + learning

The knowledge-free inductive learning persisted for a long time (until
the 1980s), — and NOW

Learning agents that already know something (background knowl-
edge) and are trying to learn some more (incremental knowledge)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 179

Formalizing learning

Descriptions: the conjunction of all the examples in the training
set
Classifications: the conjunction of all the example classifications
Hypothesis ∧Descriptions |= Classification

Hypothesis the explains the observation must satisfy the entailment
constraint

Hypothesis ∧Descriptions |= Classification
Backgroud |= Hypothesis

EBL: the generalization follows logically from the background knowl-
edge

extracting general rules from individual observations

Note: It is a deductive form of learning and cannot by itself account
for the creation of new knowledge

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 180

Formalizing learning

Hypothesis ∧Descriptions |= Classification
Backgroud ∧Descriptions ∧ Classifications |= Hypothesis

RBL (relevance-based learning): the knowledge together with the
observations allows the agent to infer a new general rule that explains
the observations ⇐ reduce version spaces

Background ∧Hypothesis ∧Descriptions |= Classification

KBIL (knowledge-based inductive learning): the background knowl-
edge and the new hypothesis combine to explain the examples

also known as inductive logic programming(ILP)
representing hypotheses as logic programs

E.g., a Prolog-based speech-to-speech translation (between Swedish
and English) was real-time performance only by EBL (parsing process)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 181

Formalizing learning

Hypotheses

Hypothesis spaceH = {H1, · · · , Hn} in which one of the hypotheses
are correct

i.e., the learning algorithm believes
H1 ∨ · · · ∨Hn

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 182

Formalizing learning

Examples

Q(Xi) if the example is positive

¬Q(Xi) if the example is negative

Extension: each hypothesis predicts that a certain set of examples
will be examples of the goal (predicate)

– two hypotheses with different extensions are inconsistent with
each other

– as the examples arrive, hypotheses that are inconsistent with
the examples can be ruled out

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 183

Version spaces algorithm

def Version-Space-Learning(examples)

local variables: V, the version space: the set of all hypotheses

V← the set of all hypotheses

for each example e in examples do

if V is not empty then V←Version-Space-Update(V, e)

end

return V // a version space

def Version-Space-Update(V, e)

V←{h ∈ V : h is consistent with e}
return V

Find a subset of V that is consistent with all the examples

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 184

EBL

1. Given an example, construct a proof that the goal predicate applies
to the example using the available background knowledge

– ”explanation”: logical proof, any reasoning or problem-solving
process

2. In parallel, construct a generalized proof tree for the variability
goal using the same inference steps as in the original proof

3. Construct a new rule whose left-hand side consists of the leaves
of the proof tree and whose right-hand side is the variability goal

4. Drop any condition from the left-hand side that is regardless of
the values of the variables in the goal

Need to consider the efficiency of EBL process

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 185

Computational learning theory∗

How do we know that h is close to f if we don’t know what f is??

How many examples do we need to get a good h??

How complex should h be??

Computational learning theory analysis the sample complexity and the
computational complexity of (inductive) learning

There is a trade-off between the expressiveness of the hypothesis
language and the ease of learning

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 186

Probably approximately correct∗

Principle: any hypothesis that is consistent with a sufficiently large
set of examples is unlikely to be seriously wrong

Probably Approximately Correct (PAC)
– h is approximately correct if error(h) ≤ ε (a small constant)

PAC learning algorithm: any learning algorithm that returns hypothe-
ses that are probably approximately correct

– aims at providing bounds on the performance of various learning
algorithms

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 187

The Curse of dimensionality∗

Low-dimensional visualizations are misleading

In high dimensions, “most” points are far apart

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 188

No free lunch∗

Theorem (Wolpert, 1996): averaged over all possible data-generating
distributions, every classification algorithm has the same error rate
when classifying previously unobserved points
⇒ no learning algorithm is universally any better than any other

The goal is not to seek a universal learning algorithm or the absolute
best learning algorithm
Instead, the goal is to understand what kinds of distributions are
relevant to the “real world”

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 189

Universal approximations∗

Recall

Theorem: All continuous functions w/2 layers, all functions w/3
layers

Theorem: GMMs are universal approximators of densities (if there
are enough Gaussians). Even diagonal GMMs are universal approxi-
mators

Theorem: Any function computable by a Turing machine can be
computed by an RNN of a finite size

How about that??

Are those learning real learning??

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 190

Learnability∗

Learnability can be undecidable (ref. Ben-David et al. Nature, 2019)

Theorem: The EMX (estimating the maximum) learnability of F ∗

w.r.t. P ∗ is independent of the ZFC axioms

– The family of sets F ∗ is the family of all finite subsets of the interval
[0, 1]

– The class of probability distributions P ∗ is the class of all distribu-
tions over [0, 1] with finite support (measurability)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 191

Discovery∗

ML can aid mathematicians in discovering new conjectures and the-
orems in pure math

- discovering and proving one of the first relationships between
algebraic and geometric invariants in knot theory (Low-dimensional
topology)

- conjecturing a resolution to the combinatorial invariance conjec-
ture for symmetric groups (representation theory)
Algorithm

- deep learning: a fully connected feed-forward neural network,
with hidden unit sizes [300, 300, 300] and sigmoid activations - the
task: a multi-class classification problem

Ref. Davies A. et al., Advancing mathematics by guiding human
intuition with AI. Nature 600, 70–74 (2021)

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 192

Smale’s 18th problem∗

What are the limits of intelligence, both artificial and human??

Theorem There are well-conditioned problems where accurate neural
networks exist, but no algorithm can compute them

Colbrook M. et al., The difficulty of computing stable and accurate
neural networks: On the barriers of deep learning and Smale’s 18th
problem, PNAS, 2022

AI Slides 10e c©Lin Zuoquan@PKU 1998-2025 10 193

